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In this paper a two-dimensional free- Lagrangian method for model-
ing compressible fluid flows is presented. Within the traditional general
approach, combining a flexible reconnected triangular mesh with a
finite difference algorithm, several new important numerical techniques
are developed to enhance stability and smoothness of the method.
Characteristic features of the method are a new technigque of additional
mesh connections and a way of mapping variables from nodes to zones
and back. A finite difference scheme is chosen to conserve different
forms of energy. The implicit discrete equations are solved by a special
iterative procedure. Four numerical examples, including flows with
relatively complex internal structure, are considered,  © 1993 Academic
Press, Inc.

1. INTRODUCTION

The Lagrangian formulation has obvious advantages for
a large variety of physical problems including interfaces,
free surfaces, confined masses of moving fluids, as well as
changes of a matenial state—chemical or kinetic reactions.
This stimulates a continual development of free-Lagrangian
methods. Experience accumulated in two and three dimen-
sions and the codes developed recently enable one to obtain
numerical solutions of sufficiently difficult fluid flow
problems (see [1-4]). The current extensions of the method
are based on different forms of the mesh, different discretiza-
tions of governing equations, and different techniques of
mesh reconnection caused by the relative displacement of
fluid elements. Sometimes a mesh refinement is used to
adapt the mesh to the gradients of the variables. That is, an
extensive technology is available for calculations.

But, as a matter of fact, free-Lagrangian methods are less
advanced and investigated than Eulerian, Lagrangian-
Eulerian, or particle-in-celi methods. The problems solved
numerically usually bave, if interfaces are not to be taken
into account, a simpler internal structure of the flow than in
a great number of problems solved by other methods. The
accuracy and convergence of numerical solutions have been
studied in detatl, mainly for one-dimensional geometry; see,
e.g., [ 5] We believe this situation is caused not only by the
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more expensive calculations but mainly by the intrinsic
difficulties of the free-Lagrangian methods. This particularly
concerns the process of mesh reconnection accompanied by
changes of the point neighborhood. Such a process seems
to insert an additionai unknown mechanism which is not
described by the fluid dynamics equations and stimulates
perturbations. Since the natural numerical viscosity of the
free-Lagrangian methods is not usually large, points can
acquire additional chaotic small-scale motions and undesir-
able penetrative properties. These perturbations distort the
solution and can lead to an inadequate description of the
physical process.

For this reason not only various types of ariificial
viscosity are widely used in free-Lagrangian methods (6],
but, in addition, artificial velocities [3], an artificial
improvement of nodal locations [ 7], restrictions of particle
penetrations (87, and some ather artificial dissipators. The
Lagrangian—Eulerian methods mitigate the difficuities by
the rezoning phase, that is, a periodical transference of the
variables into a new mesh. Evidently, this approach gives a
smoothing effect, introducing, similar to the Eulerian
methods, a numerical diffusion. A finite difference scheme is
very important from this point of view. That is why the
schemes having an enlarged numerical viscosity, e.g., the
Godunov method, lead to robust codes [9]. We believe that
to obtain a robust code without any auxiliary artificial
remedies that smooth and stabie difference schemes should
be used. The perturbations caused by the mesh reconnec-
tions should also be reduced to a minimum,

We made an attempt to overcome the difficulties of the
free-Lagrangian method. The proposed two-dimensional
conservative stable smoothness-enhancing free-Lagrangian
method (CSSEL) is constructed in such a way as to enhance
smoothness and stability of the numerical solution in
different aspects.

First, the triangular mesh is used with all the variables
node-centered. Following the idea [6] with certain
modifications, temporary zone-centered energies and
masses are introduced by a mapping process. The pressure
becomes also zone-centered, so that the triangles make the
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mesh stiffer and more stable to perturbations. In contrast to
[1] we consider the mesh stiffness, as a technique for the
suppression of perturbations, to have a great advantage,
especially for flows with a complex structure. In addition,
the schemes with node-centered velocities and zone-
centered pressures favor a smoothness of calculations. (We
trted and abandoned Voronoi cells because our numerical
tests of such an approach with all variables zone-centered
have revealed some disadvantages. The major one is that
points under compression can come too close together. }

Secand, the templates for the discrete equations include
both the nearest neighbors of the node defined by the
Voronoi algorithm and the neighbors of the nearest
neighbors if they are sufficiently close. This permits the
points to interact before they become the nearest neighbors
and improves the method itself.

Third, great attention is paid to the conservative proper-
ties of the scheme. The finite difference scheme we have
chosen has been proposed in [10] for node-centered
velocities and zone-centered pressures. The discrete equa-
tions conserve total energy and momentum, as well as
include the exact local relationships between internal,
kinetic, and total energies. This is especially important for
problems with kinetic-into-internal energy transformations,
as well for a coarse mesh. We have combined the scheme
[ 107 with the process of mapping the mass and energy from
nodes to zones.

And finally, we enhance the stability of the finite
difference scheme itself by introducing implicit terms into
the motion equation. To solve the discrete equations an
iterative process is designed.

The strength and possibilities of CSSEL are
demonstrated by several computational examples, includ-
ing an interaction of a shock wave, caused by an impulsive
load, with a thin gas layer of low density, a Meshkov—
Richtmyer instability, a high speed projectile impact on a
material surface, and jet formation resulting from the
expansion of a vaporized foil.

The algorithm can be divided into sequantial steps:
reconnection (triangulation and additional connectionsj,
mapping, hydrodynamics, and remapping.

2. MESH ORGANIZATION

2.1. Triangulation

In our method the Delaunay triangular mesh [11], dual
to the Voronoi mesh [12], is emploved. This technique
of triangulation 1s widely known and needs no special
description.

We did not use any of the algorithms for initial mesh
generation because at the beginning the points were
regularly distributed and could be easily connected in a
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proper way. As the problem runs, the simple frequently used
technique of maintaining the Delaunay mesh is employed
(see [1, 137). It works in the following way. The triangles
which have a common side are examined at every cycle. If
the sum of the angles opposite to the common side exceeds
180° the existent common side (a diagonal of the quadri-
lateral) is removed and the other diagonal is used as a
connector.

It should be pointed out that triangular cells can become
largely stretched along some directions during calculation.
Or it can prove convenient to specially construct a stretched
or compressed grid. As a result of small point displacements
and the following restructuring of such a mesh in accord-
ance with the Delaunay triangulation, small triangle areas
can arise. In this case it is often reasonable to keep the
stretched cells for an approximation improvement. For this
purpose the Delaunay triangulation is applied to the com-
pressed cells. A center of the quadrilateral formed by the tri-
angles and a strething direction are defined for every pair of
neighboring triangles. (The center of the quad is defined as
a mass center and the stretching direction is defined by the
extreme value of the quad moment of inertia along this
direction). Then the neighbor change criterion described
above is applied in the coordinate system which is located in
the quad center, has an axis along the stretching direction,
and is compressed along the appropriate direction so that
the quad has an approximately equal size along both axes.

If a problem includes rigid walls, a moving piston, or
symmetry axes, no nodes are located on the boundaries.
Auxiliary fictitious nodes that are symmetrical to the wall or
the axis are introduced into the Delaunay mesh. This
provides an appropriate approximation of the boundary
conditions and a uniform calculation process for all tri-
angles and interior nodes. The mass, energy, and density at
the fictitious points are set equal to the values at the corre-
sponding symmetrical interior nodes. Interfaces and free
surfaces are not specified. The motion of the free surface
points occurs due to the absence of neighbors on the
vacuum side.

It should be specially noted that points in the real fluid
flow can escape either to the free boundary or migrate out
of it to the interior region. To take this process into account
the free surface is examined during a calculation. If three
neighboring points belonging to the free surface can form an
acute triangle this triangle is created with the middle point
becoming interior. The reverse process goes as follows: If
two boundary points and an interior point form a triangle
with an angle Jarger than 120° this triangle is broken so that
each of the three points now belongs to the free boundary.

2.2, Additional Connections

Switches of diagonals in the quadrilaterals during recon-
nections result in discontinuous acceleration. In fact, a
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formation of new triangles with their new zone-centered
parameters is discontinuous. The points start to interact
only at a fairly close distance after they become the nearest
neighbors. The effective nodal surface is changed discon-
tinuously and this also may cause undesirable perturba-
tions.

Note that the point acceleration is continuous if the
Voronoi polygonal cells are used as the integration control
volumes because the length of the polygon side between
two points which have just become nearest neighbors (and
hence the contribution of this side to the integral) proves
to be zero. For this reason the action of the new nearest
neighbor on the point just after reconnection is small.
Nevertheless, such a mechanism of the interaction of points
seems to start too late and does not cause an appropriate
pressure rise in the cell to provide a reflection in all the cases
when the particles collide,

We have designed a technique reducing the discon-
tinuities during reconnections in our approach and enhanc-
ing the smoothing and monotonic properties of the method.
We let the points nteract before they become the nearest
neighbors. In this way certain joint triangles, called couples,
are chosen from all the variety of triangles. Two triangles
forming a coupie have to satisfy the following three condi-
tions. First, these triangles are required to form a convex
quadrilateral {none of its four angles exceeds 180°), Second,
a sum of two angles opposite to the common side (denote
this sum by ¢} must be greater than the similar sums for the
other quadrilaterals formed by each of the two triangles.
And third, ¢ must be greater than the quantity ¢, (which is
taken to be 90°). Thus, the couples consist of the traingles
which are to be reconstructed in the following cycles. Some

FI1G. 1. Anexample of the triangular mesh. The Delanay triangulation
is shown by solid lines, The additional connections are shown by dashed
lines.
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triangles may not be included in the couples. In the quadri-
lateral formed by the couple an additional diagonal is
created.

Connections of triangles in the couples are illustrated in
Fig. 1. The normal triangular grid is shown by solid lines.
We will try to make some explanations based on this figure.
Trangle 4ik 15 the only one for triangle dik( to form a
couple. Triangle Amil does not match Aik! because quad
mikl is concave; neither does triangle A¢/k. For triangle 4ijk
there are three possibilities to form a couple. But triangle
Aijk forms it with Aikl since the sum ¢ of angles j and / is
greater than the sum of angles # and & and the sum of angles
i and s. Triangles Anji and Anit do not form a couple
because the sum ¢ is smaller than 90°. Triangles Aprk and
Algm do not have any free adjoining triangle, so they can
not form a couple.

The idea is that not only the triangles of the main grid but
also the triangles formed by additional connections are
simultaneously involved in the calculation. The mapping
procedure is applied for each triangle independently, but the
contributions to the node-centered velocity increments after
the momentum equation is solved and to the node energy
at the remapping stage are multiplied by the coupling
coefficients which are introduced in the following way.
For example, for triangles Aifk and Adik! the coefficient is
taken to be

c;=1+4+05cos ¢, (1)

where ¢ is the sum of angles j and /. For triangles Aijl and
Ajkl the coefficient is introduced as

;= —0.5cos @. (2)

Other forms of ¢, and ¢, are possibie, but it is important to
satisfy the following conditions:

Cl +62= ]:
¢, =c,=035, if ¢@=180°
c;=1,¢,=0, f o>,

The value ¢, defines the neighbors which the node can
“feel.” In this way, for example, the force on node 1 is
determined not only by surrounding nodes i, k, ¢, m but, in
addition, by nodes j, r, and 1.

The technique described here works as if the calculations
were made twice for two different meshes (consisting of solid
lines and of solid and dashed lines), and the resulting
variables values were obtained by summation with the
weighting coefficients. The result is that the reconnections
(in accordance with the Delaunay triangulation) do not
have an appreciable effect on the calculated variables. For
the couple of right triangles it does not matter which of the
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two possible diagonals is used. Therefore, the triangulated
orthogonal grid with eight neighbors to every point (includ-
ing additional connections) becomes the most suitable for
calculations. (In the absence of additional connections the
orthogonal triangulated grid with six neighbors to every
point is not convenient because a reconstruction takes place
at small node displacements that can lead to oscillations.)

2.3. Mapping Procedure

In our method all prognostic variables (specific energies
e;, particle coordinates r;, and velocities u,) are point-cen-
tered. Masses m, associated with nodes are constant for all
time. Following [67], the mapping procedure is performed
at the beginning of each cycle; that is, temporary zone-cen-
tered energies and masses are computed. The zone-centered
information is forgotten at the end of cach cycle. The
calculated zone-centered energy increments are contributed
back to the nodes at the remapping stage with a conserva-
tion of the internal energy.

We have modified the mapping procedure to enhance the
smoothness of the method. in [6] the mass and energy con-
tributions from a point to zones have been taken propor-
tional to the angles between the triangles sides coming from
the node. We put the mass and energy contributions from
the node to every zone to be equal; that is, the mass of the
node is divided equally among the triangles surrounding the
node. This makes the mesh stiffer and more sensitive to
the changes of variables and prevesits a chaotic motion. The
density and specific energy grow sharply if the triangle
compresses and its area reduces. Another advantage of this
mapping technique is that the triangular zones have fixed
masses in the absence of reconnections.

The mapping phase can be specified by

5
my=»
* 0 Ny (3)
;e
mkek=2 N
jiky AV

where k represents the triangular zone, j represents the
node, ¥, is the number of triangles surrounding node j, and
J(k) are the nodes associated with triangle k. Note that here
and below subscript & refers to zones, and subscripts { and
Jrefer to nodes.

The pressure at nodes and zones is calculated through the
equation of state. However, to prevent the extreme growth
of the zone-centered pressure its value in each zone is
restricted by the maximum pressure at the vertices. The
major difficulty of this approach appears for problems with
several materials. It is not quite clear how to calculate the
pressure in a zone if the triangle is comprised of mass
elements which belong to different materials.
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In the exampie calculations demonstrated below we took
the same equation of state for different gases. But recently
we computed the penetration of a massive body into a light
gas, assuming different equations of state. In this case we
calculated the pressure in the triangles at the interface
through the equation of state of the light gas even if an only
node belonged to the gas. This produced good results, but
the problem of equation of state stands and should be
investigated more carefully.

3. THE FINITE DIFFERENCE APPROACH

3.1. Discrete Equations

Finite difference equations obtained in [10] from the
variational principle can be written either for Cartesian or
cylindrical geometries. The density g, and volume V), of the
triangular zone k are defined as

my=Vipy, (4)
1

Vi= 2_0(_ ((xizh X4 ('Vj3 -'V”)
— (=X~ )k ()

where m, is the zone-centered mass, x;, y; are the node
coordinates, and «=1 or 2 for plane and cylindrical
geometry, respectively. For cylindrical geometry x, is the
radius and y; is the length along the symmetry axis. The
vertices of the triangular zone £ are denoted as {,, i», i; in
a counterclockwise order.

The momentum equation is written for node  as

ur_r+1 —u" -
m, i L Z ka, V;i+0.5, (6)
At Pl

where m, is the node mass, u; is the velocity vector, A1 is the
time-step, P, is the zone pressure, and V,; means gradient
with respect to the coordinates™of the particle /. Summation
is done over all triangles surrounding the node i. The super-
scripts 7 and »+ ] designate subsequent time Jevels. The
superscript #+ 0.5 denotes time centering which has a
special form for the volume derivatives

aVn+0.5 1
aer =§ (x?— 1)n+0.5 (}’.»', _ yiz)n+0.5’
‘ (7)
aV2+0‘5_i X% — tz)rz-ﬂ-fJ.S
PO A

where i, and i, are the vertices of the triangle & sequentially
numbered from the vertex i in a counterclockwise order.
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Particle trajectories r(x, y) are calculated on the basis of
the kinematic equation

m+ 1 ”
r; r; — 05

pT j (8)

The equation of the energy conservation can be written as

1 n
et _e -
k k
My~ = — P, Y WOV, 0,
At K

(9)
where e, is the specific internal energy and the sum is over
three vertices of the triangle £.

Time centering in Egs. (6) te {9) is introduced in accord-
ance with the ideas [14]. That is, Eq. (9) can be exactly
transformed both into the thermodynamic equation for the
specific internal energy
eptt—el <

Vn+l_ |
—_p K
At §

M At
and into same local relationship for a specific total energy.
The summation of Eq. (6) multiplied by u?*%° over ali
nodes plus the summation of Eq. (9) over all zones gives an
accurate conservation of the total energy.

Thus, the impulse and energy conservation is guaranteed
in the finite difference equations. The correct approximation
of the energy equation in various difference forms is very
important. For the conservative schemes without these
properties negative values of thermal energy may appear
during the calculation.

Time centering of the zone pressure P,, including the
artificial viscosity, does not affect the energy conservation.
But to obtain a greater stability an implicit scheme should
be used. The pressure can be extrapolated from time level #
to n41 by assuming that the entropy of the particle is
constant [ 157. This leads to the expression

naVk
S)k —EAE

Then, the pressure in Egs. (6) and (9) can be written as

2\ n
Pk=P2“(p_;—cﬁ>
&

N N aP
rterie (5

XAr Yy itV it
AUk}

(10)

Here ¢, is the sound speed, @, is the artificial viscosity, and
» is the zone pressure which is determined from the
equation of state

x = Prleg, pp).

(i1)
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As a result of such pressure extension to the next time
level, Eq.(6) becomes implicit and the finite difference
scheme becomes unconditionally stable. However, Eq. (6)
must be solved by some iterative procedure which will be
described in the following section.

Following [16], the artificial viscosity can be used in a
form

Q. =epj Auj, (12)
where ¢ is the numerical constant and Au, is the difference
of velocity components at a distance of a cell size. If the cell
volume grows, @, is set to be zero. However, for the two-
dimensional geometry it is not quite clear in which way Adu,
should be determined. Requiring @, be invariant with
respect to a grid compression or stretching, we calculate Au,
in the following way: Every side of the triangle is considered.
If the side is compressed the difference of velocities at every
pair of vertices is taken and then Au, is defined as the
maximum of three quantities:

du, =Max(|u? —ul |, jwi—ui], [u}—ul])  (13)
If the side of the triangle is stretched the corresponding
difference in (13) is set to equal zero.

We tried other forms of artificial viscosity, for example,
projecting of the velocity field onto the direction of velocity
gradient. But this direction proved to be fairly close to the
direction of the triangle side which is subjected to the maxi-
mum compression. The test calculation have shown that the
simplified form of artificial viscosity (12), (13) does not
make the results worse. But in some cases (12), (13)
provides too much viscosity. To get the “best” form of
viscosity more comprehensive investigations are necessary.

Assuming constant entropy as a model for pressure
extrapolation in zones that are being shocked does not
lead to any essential consequences because the pressure
extrapolation is equivalent to some auxiliary artificial
viscosity which is much smalier than the main artificial
viscosity (12).

3.2, Remapping

After solving the system of Eqs. (4) to (13) at every time
level, the remapping, that is, the contributions of the energy
increments Ae, =¢e;*!'—e¢} to the appropriate nodes, is
applied. This procedure differs essentially from [67. The
value de, is separated into (wo components de, and Ade;.
The firsi one de, is the energy increment caused by the
artificial viscosity, and Ae} is cause by the work of the
pressure itself. Contributions of the positive de, inio
the vertices are made proportionally to the densities at the
vertices

_ My de; p;

de! = . (14)
2o P,
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This reduces the error in anomalous heating if shock forma-
tion takes place. (This defect is known to be inherent to
Lagrangian schemes [5].)

Contributions of »1, def into the nodes are made with
some precautions to prevent an extreme heating or cooling.
Namely, if e} is negative the contributions are made to the
vertices with the maximum pressures at the previous time
level. In the opposite case my de; is contributed to the
vertices with the minimum node pressures. As the numerical
tests have shown, this way of de¢, contributions does not
cause too strong smoothing, since the dependence of the
variables for known simple problems was close to analytic
solutions.

The remapping procedure is consistent with internal
energy conservation. If a triangle has an additional connec-
tion, as have been pointed out, the coefficients (1) and (2)
are taken into accont during the remapping.

After solving the discrete equations and following the
remapping we obtain the velocities and energies at the
nodes. To obtain the densities and pressures at the nodes
{needed only for the remapping at the next cycle), a certain
volume must be associated with the node. This volume is
defined as

Vi=

[T

Z Vk-
ki)

3.3. lterarive Procedure

The momentum equation (6), in which the pressure is
given by {10), should be solved by iteration. The iterative
procedure is applied separately to velocities and geometrical
factors. As to the geometrical factors V, F2+%* in Eq. (6)
and (10), the convergence of iterations does not meet any
difficulties. Using Eq. (8), iterations for Eq. (6) rapidly con-
verge if the geometrical factors calculated at the previous
iteration are substituted into the right-hand side of Eq. (6).
However, if geometrical factors are obtained and frozen, not
every iterative process for obtaining velocities u® ! will be
convergent. Let u!’ be an approximation to u?*! at the
iteration with the number /. If the values u!’* " are obtained
simply by substitution of u!” into the right-hand side of
Eq. (6} this iterative process will converge at a more severe
condition than the Courant stability criterion. Therefore,
the using of such implicit scheme would not provide any
advantage.

We have made use of another iterative procedure. Node
i in which calculations are made according to Eq. (6) is
separated in the relation (10) in the following way

2\ 1
Pk—sz(p;Ck) At(uE””V,Vﬂf&f’
&

+ Z M}”Vsz*-Dls)""Qk- (]5)

i
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After substitution (15) into the right-hand side of (6) and
replacing u” *! by u/* " in the left-hand side (6) we obtain
two equations for the components of vector w!/*".
These equations can be solved without any difficulties. Such
an iterative procedure is convergent and the rate of

convergence, as can be shown, depends on the quantity

b= Max (iz E"f—’zf-(v,.i/k)z). (16)

] m,-k“) Vk

If a norm of the velocity deviation at iteration /is introduced
as

16 = Max u() —u("* V), (17)
then it can be obtained that
4+ 1) bA12 3}
fBu il émfz (TR (18)

So, the iterations are convergent, but the rate of con-
vergence diminishes as A¢ grows. The most profitable At
choice is that in which the Courant condition, taking in our
case the form

At<b (19)

is slightly exceeded. Note that the time-step size 4t accord-
ing to (16) and (19) is associated with some dimension
averaged over several zones rather than with the minimum
dimension of triangles. While solving Eq. {6) at a certain
time level, several iterations have been required to achieve
convergence accuracy of about 1 %.

After the velocity field calculation by the iterative proce-

- dure, the final pressures P, are calculated and substituted

into the right-hand sides of Egs. (6) and (9). Only aiter
this the final velocities and energies are found. In this case
the energy conservation is exact and is unaffected by the
accuracy of iterations.

Along with criterion (19), the time-step Az is restricted
by the condition resulting from the use of an artificial
viscosity

Ar < — f Min 4—
Y wv Yy
Ak

(20)

The coefficient § here depends on the coeflicient ¢ in the
expression for the artificial viscosity (12). We have taken the
values = 0.5 and §=10.5. This provides sufficient pressure
smoothness after the shock front with acceptable shock
thickness.
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4. NUMERICAL RESULTS

4.1. Interacetion of a Shock with a Low Density Layer

If a thin gas layer of a low density (heated layer) is located
perpendicular to a moving shock front, a precursor will
arise in the heated layer and propagate ahead of the main
shock. Recently this problem has been causing great inter-
est. For a planar shock generated by a piston the problem
has been numerically investigated in [ 17] with the Eulerian
FCT method [187. The numerical simulation has shown
the flow to be self-similar. We have repeated one of the
caleulations [ 171 and have obtained good agreement of the
results.

Here we consider a similar problem for the shock
generated by an impulsive load at the free boundary of an
ideal gas occupying a half space. Figure 2 illustrates the
initial conditions. The energy is instantaneousiy released in
the region at the free surface which is located along Y-axis.
This resolts in 2 shock wave moving inte the gas and a flow
into vacuum. A gas layer of low density p, (in comparison
with the density of the background gas py) is located per-
pendicular to the free boundary along X-axis. This layer has
the same pressure as the surrounding gas. In the absence of
the heated layer the motion after a sufficiently long time
becomes self-similar (for an infinite strength shock) [197].
Such a one-dimensional problem has an exact analytic
solution if the specific heat ratio y = 1.

If the heated layer is very thin and, hence, there is no new
dimensional parameter, the problem must also be self-
similar. In this case the flow becomes two-dimensional
because the velocity of the shock moving along the heated
layer is greater than that of the main shock moving into the
background gas. So the existence of the infinitely thin layer
leads to the formation of the precursor and the large-scale
restructuring of the flow.

The Lagrangian method has an obvious advantage in this
problem because of the free boundary. The initial grid was
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F1G. 2. Intitial conditions in the problem of the shock wave/heated
layer interaction.

composed of right triangles and had 40 x45 points, We
introduced either a uniform, 1.73 times stretched along the
X-axis, or a nonuniform mesh in which distances between
the nodes grew aleng X and Y directions in a geometric
progression. The points with a low density p, =0.25p, were
situated in three layers along the X-axis, which was adopted
as a rigid wall. The masses of these points were lower than
those of the points of the background gas proportional to
their densities. The impulsive load initial energy was
released in two computational layers near the free surface.
Fragments of the Delaunay mesh and the flow velocity field
are illustrated in Figs. 3 and 4. The main shock propagates
along the X-axis in accordance with the exact solution [ 197].
The flow behind the precursor is characterized by a vortex
motion and interior shocks. The particularities of the flow
can be scen in Fig. 4, as well as in Fig. 5, where pressure
contours are plotted.

The Lagrangian method allows to see most easily and
naturally what gas particles form a precursor. The low
density layer points and those of the background gas at
a distance {rom X-axis that is equal to two low density
layers are marked in Fig. 6. The space behind the precursor
is seen to be filled by the background gas points travelling
across the obligue shock front.

FIG, 3. A portion of the triangular mesh in the problem of the shock wave/heated [ayer interaction.
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FIG. 4. A flow velocity field in the problem of the shock wave/heated layer interaction.
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FIG. 5, Pressure contours in the problem of the shock wave/heated layer interaction. The numbers indicate pressure values.
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FIG. 6. Marking of particles in the problem of the shock wave/heated layer interaction. The points of the background gas are marked by crosses,
the points of the low density layer by triangles, and some distinguished points of the background gas by squares.



FREE-LAGRANGIAN METHOD

The numerical solution on the nonuniform grid with the
ratio of subsequent mesh intervals equal to 1,15 has enabled
the solution time interval to be enlarged and a tendency to
similarity to be obtained with better accuracy. The slope
angle @ of the oblique shock obtained in our calculation
satisfies an approximate relation [17]

sin® w=p,/po.

The precursor distance from the initial free surface position
X =90 is proportional to that travelled by the main shock.
The ratio of these distances is 1.35 within a numerical error
of about 3%. This constant ratio substantiates the self-
similar character of the flow.

4.2. Meshkov—Richtmyer Instability

Examples of the Meshkov—Richtmyer instability simula-
tions by free-Lagrangian methods have been presented in
(1,3, 6] Here we have accomplished calculations corre-
sponding to the recent experiments [20]. In these
experiments two different gases—xenon and argon—at a
pressure of 0.5 bar have been initially separated in a shock
tube by a thin film of sinusoidal shape. The sinusoid
wavelength has been varied. An interface instability up to a
turbulent intermixing has been caused by an incident shock
with the Mach number of about 3.5.

Results of our calculation where the shock travels from
the light to heavy gas in the X-axis direction are illustrated
in Figs. 7-8 The initial grid consisted of 80 x 20 nodes,
The grid layers near the interface were shifted along the
shock tube axis (X-axis) to get a smooth transition to the
sinusoidal shape of the layers which form the interface.
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FIG. 7. A triangular mesh and velocity field at =0 when the shock
reaches the interface in the problem of Meshkov—Richtmyer instability.
The argen/xenon interface is marked out by a thick salid line.
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The sinusoidal interface wavelength was 3.6 cm, and the
amplitude was 0.5 cm. Far from the interface the mesh steps
were elongated along the X-axis with two factors—1.1 and
then 1.2,

Time ¢ =0 is settled for a beginning of the shock-interface
interaction. Figure 7 demonstrates the compressed tri-
angular mesh behind the shock to the left of the interface
and an undisturbed mesh to the right. A velocity field is
uniform behind the shock, velocities correspond to the
speed of the piston, and the shock front is flat. At
t=137 mks (Fig. 8) the interface starts to change, having a
characteristic “mushroom” form. A penetration of the heavy
gas particles into the light gas is seen near the edge of the
“mushroom’s cap.” This picture i1s in complete accordance
with a dark-field shadowgram presented in [201, both the
form of the interface and the shock location being in good
agreement with the experiment.

The described computational example corresponds to
the intermediate wavelength of the interface. At larger
wavelengths, both in [20] and in the calculations, the
interface remained smooth without changing and at
smaller wavelengths an intensive gas intermixing arose near
the perturbed interface.
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FI1G. 8. An interface distortion aflter the shock as the Meshkov—
Richtmyer instability grows.
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FIG. 9. The projectile impact with a unit velocity on the surface. The
impactor points are marked by circles,

4.3. A Projectile Impact on a Material Surface

The free-Lagrangian methods are traditionally used for
calculations of impacts on various targets [1, 3]. To test
our method we have chosen the problem of a cosmic body
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impact on a planetary surface. This problem has been solved
by the Eulerian method in [21] for various densities and
velocities of impact using a real equation of state. After
repeating some of the calculations [21] we have obtained
similar results.

Figure 9 shows our numerical resuits for the simplified
problem in which the impactor and target materials are
assumed to be an ideal gas with y = 2. In this case the solu-
tien does not depend on the impactor velocity. An ideal gas
assumption becomes more accurate the higher is the impac-
tor velocity. We took the ratio of a planetary density to the
impactor density to be 3, simulating an impact of a comet
nucleus. The results proved to be close to the results {21 ]
for 1 g/cm? ice projectile impacting a silicate surface at a
velocity of 15 kmy/s.

The grid was constructed with 180 points to define the
projectile and 1600 points to define a half space of the target.
The points were located on concentric circumferences with
centers in the impactor symmetry center and in the impact
point. Imitially the projectile nodes were detached from
the target except for the two nearest points which were
connected with the target surface by two triangles. The
other projectile points were connected with the surface
while the projectile became closer to the target.

The case of constant y is of interest [rom the code testing
point of view because the solution after a sufficiently long
time becomes self-similar [19]. A transition to similarity
can be seen in Fig. 9 for the latest time. The shock has a
bowl shape that is typical for the self-similar solution of this
problem.

4.4. Expansion of a Thin Cylinder Shaped Foil

A problem of laser-heated thin exploding foils has been
recently considered in [22]. A numerical hydrodynamics
simulation has been performed to study an expansion of
long thin aluminum ribbons. We consider here an explosion
of a short cylinder-shaped foil. A hollow cylinder with a
2-unit height, the same diameter, and a wall 0.00 thick is
assumed to be instantaneously vaporized, and its material
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FIG. 10. A triangular mesh and velocity ficld before reflection of the foil particles from the symmetry axis.
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FIG. 11. A formation of jets spreading into vacuum during expansion of ¢ylindrical foil.

becomes an ideal gas with y = 1.2. The grid of 20 x 20 nodes
was strongly compressed in the radial direction at the begin-
ning. The cylinder expansion is illustrated in Figs. 10-12.

After the particles reflection from the symmetry axis
{ Y-axis) a low density jet 1s formed, spreading initially in the
axtal direction and then gaining radial velocity. In the radial
direction a shock propagates occupying a part of the jet
spreading in front of it. Note that a portion of this
jet spreading radiaily preserves almost one-dimensional
character, the triangular cells being strongly clongated.
Figure 12 shows the expansion inertial stage when the
pressure does not apprectably affect the motion. Thus the
central part of the radial jet formed at the initial times will
continue its motion, unaffected by other particles, up to
infinitely large times. The solution of this problem at late
times depends on the initial data.

It should be noted that the triangulation in Figs. 11 and
12 is not strictiy that of Denaunay in all the regions of the
flow. For the stretched cells, as pointed out above, the
Delaunay triangulation is applied to the compiessed mesh.
This takes place in Figs, 11 and 12.
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5. CONCLUSIONS

The CSSEL method has proved to be very effective for
fluid flow calculations. The mesh flexibility combined with
the enhanced intrinsic smoothness and stability have
allowed the method te be applied to problems with a
relatively compiex internal structure of the flows. No addi-
tional artificial remedies have been required to improve the
numerical solution. In the examples demonstrated the
method has provided an adequate description of free expan-
sion, vortex motion, shock interactions, and other impor-
tant aspects of the flows. However, as in other Lagrangian
methods, the computer time proves to be greater than for an
Eulerian method if the same number of nodes is used. But
the necessary number of points for many problems is much
smaller if the free-Lagrangian method is employed.

It took several years to design our modification of the
method and obtain a robust code. In the near future we
intend to include in the code additional equations for
such physical phenomena as heat conduction, emission of
radiation, and gravitational attraction.

150 ] —_
/ < =78
Y / . / ~
! £
J e L

100 /f//’ o ///
rr
re

X (radius}

FIG. 12, The late stage of the foil expansion,
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